
1  Characteristics & classification of living organisms

i

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



Computer Science
for Cambridge IGCSE™ & O Level

 

Chris Roffey

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



Computer Science
for Cambridge IGCSE™ & O Level

 

Chris Roffey

PROGRAMMING BOOK FOR PYTHON   

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC  3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of education,  
learning and research at the highest international levels of excellence.

www.cambridge.org  
Information on this title: www.cambridge.org/9781108951562

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant  
collective licensing agreements, no reproduction of any part may take place without the written  
permission of Cambridge University Press.

First published 2017 
Second edition 2021

20  19  18  17  16  15  14  13  12  11  10  9  8  7  6  5  4  3  2  1

Printed in Malaysia by Vivar Printing

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-95156-2 Programming Book Paperback with Digital Access (2 Years)

ISBN 978-1-108-94828-9 Digital Programming Book (2 Years)

Additional resources for this publication at www.cambridge.org/go

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites 
referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. 
Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but  
Cambridge University Press does not guarantee the accuracy of such information thereafter. 

Third-party websites and resources referred to in this publication have not been endorsed by Cambridge Assessment International 
Education.

Exam-style questions and sample answers have been written by the authors. In examinations, the way marks are awarded may be different.  
References to assessment and/or assessment preparation are the publisher’s interpretation of the syllabus requirements and may not fully 
reflect the approach of Cambridge Assessment International Education. 

The information in Chapter 14 is based on the Cambridge IGCSE, IGCSE (9-1) and O Level Computer Science syllabuses (0478/0984/2210) for 
examination from 2023. You should always refer to the appropriate syllabus document for the year of your examination to confirm the details 
and for more information. The syllabus documents are available on the Cambridge International website at www.cambridgeinternational.org

NOTICE TO TEACHERS IN THE UK
It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following 
circumstances: 
(i)	 where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
(ii)	 where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of 

Cambridge University Press;
(iii)	 where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 

1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction 
for the purposes of setting examination questions.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

vi

 Contents
The items in orange are available on the digital edition 
that accompanies this book.

Introduction � vi

How to use this book � viii

How to use this series � x

1	 Python 3�
1.1	 Getting Python 3 and IDLE� 2

1.2	 Other Integrated Development 
Environments (IDEs)� 5

1.3	 Turtle graphics� 8

1.4	 Graphical user interface (GUI) 
applications� 12

1.5	 Additional support� 12

2	 Variables and arithmetic  
operators�
2.1	 Variables and constants� 15

2.2	 Types of data� 15

2.3	 Pseudo numbers� 17

2.4	 Naming conventions in Python� 17

2.5	 Arithmetic operators� 18

2.6	 Programming tasks� 20

2.7	 Python modules� 22

2.8	 Random and Round� 24

3	 Algorithm design tools�
3.1	 Programming constructs� 27

3.2	 Design tools� 27

3.3	 Flowcharts� 28

3.4	 Pseudocode� 29

3.5	 Effective use of flowcharts  
and pseudocode� 31

4	 Subroutines�
4.1	 Subroutines� 34

4.2	 Programming a function� 37

4.3	 Programming a procedure� 41

5	 GUI applications�

5.1	 Make your first application in a  
window with a button� 44

5.2	 Other tkinter widgets you can use  
in your applications� 46

5.3	 Choosing a text-based or  
GUI application� 49

6	 Sequence and strings�
6.1	 Flowcharts and sequence� 52

6.2	 Pseudocode and sequence� 54

6.3	 Use of flowcharts and pseudocode  
in programming� 56

6.4	 String manipulation in Python� 56

7	 Selection�
7.1	 IF statements� 63

7.2	 Logical operators� 64

7.3	 Coding IF statements in Python� 65

7.4	 Multiple IF statements� 69

7.5	 Nested IF statements� 70

7.6	 CASE statements� 71

7.7	 Drawing flowcharts for  
CASE statements� 73

7.8	 Boolean operators� 75

8	 Iteration�
8.1	 Types of iteration� 80

8.2	 FOR loops� 80

8.3	 WHILE loops� 87

8.4	 REPEAT...UNTIL loops� 93

8.5	 Gathering experimental data� 96

Note: GUI applications are optional. They are not 
covered in the syllabuses.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



vii

9	 System design�
9.1	 Top-down design� 102

9.2	 Structure diagrams� 102

9.3	 Design steps� 105

9.4	 The complete design process� 109

10	Arrays�
10.1	 Declaring an array� 113

10.2	 Initialising arrays� 114

10.3	 Using arrays� 114

10.4	 Groups of arrays� 126

10.5	 Two-dimensional arrays� 128

10.6	 Array reference for implementation  
in Python� 131

11	Checking inputs�
11.1	 Validation� 136

11.2	 Verification� 137

11.3	 Programming validation into  
your systems� 137

12	Testing�
12.1	 When to test� 152

12.2	 Debugging� 152

12.3	 IDE debugging tools  
and diagnostics� 154

12.4	 Identifying logical errors� 156

12.5	 Dry running� 156

12.6	 Breakpoints, variable tracing  
and stepping through code� 161

12.7	 Beta testing� 164

13	Files and databases�
13.1	 Files� 168

13.2	 Databases� 171

13.3	 Querying databases� 173

13.4	 Python and SQL� 178

13.5	 More advanced SQL� 179

14	Programming scenario task�
14.1	 Reading the question� 184

14.2	 Constructing a skeleton answer� 185

14.3	 Filling in the details� 186

14.4	 Putting it all together� 188

14.5	 Final thoughts� 189

15	Examination practice� 194

Appendix 1: Turtle reference� 205

Appendix 2: Tkinter reference� 207

Glossary� 211

Acknowledgements� 214

Solutions 

Contents

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

viii

 Introduction
This fully revised edition reflects the new Cambridge IGCSE™, IGCSE (9–1) and  
O Level Computer Science syllabuses (0478/0984/2210). It includes all new tasks and 
challenges based on feedback from readers and teachers. But the aim of this edition 
remains true to the original: to provide a programming book that specifically covers 
the material relevant to the syllabuses. This book will also provide you with a starting 
point in the exciting and rewarding process of being able to create your own computer 
programs. I hope you find the book a helpful step into the world of computer science.

Language
The syntax and structures used to implement programming techniques vary across 
different languages. This book is entirely based around Python 3, one of the three 
recommended languages for the syllabuses. Similar books are also available which 
focus on Microsoft® Visual Basic and Java programming languages.

Python has, at its core, the principle that code should be easy to read. This means that 
in many ways it is very close to pseudocode. The pseudocode structure used in the 
examination papers uses a language-neutral style. You will need to become familiar 
with this, and be able to read and follow the logic easily. When writing your own 
pseudocode the most important thing is to ensure your logic is clear. Pseudocode is 
meant to be a way of expressing clearly the logic of a program, free from the worries of 
syntax.

Python also has a recommended style guide that can be found at the python.org 
website. Here, for example, it is recommended that Python programmers name 
functions and variables with descriptive all lower case characters separated by 
underscores, for example, my_variable. As it could be very confusing to keep 
swapping naming conventions, this book assumes that you are going to stick, wherever 
possible, to the correct Python style but be a flexible enough thinker to be able to read 
other pseudocode styles. It is recommended that when preparing for examinations, you 
ensure you are aware of the exam board variable naming style.

Support
As you work your way through the exercises in this book you will develop your 
computational thinking skills, independent of any specific programming language.  
You will do this through the use of program design tools such as structure diagrams 
and flowcharts. You will also make use of pseudocode, a structured method for 
describing the logic of computer programs.

It is crucial that you become familiar with these techniques. Throughout this book, 
all the programming techniques are demonstrated in the non-language-specific format 
required, with the exception of variable and function naming.
SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



ix

Introduction

To support learning, many of the chapters include exam-style tasks. Solutions to all the 
chapter tasks can be found on the digital part of this resource. There are examples of 
appropriate solutions that show how to turn logical ideas into actual programs.  
There is also a series of exam-style questions in Chapter 15.

Developing programming skills
One of the advantages of Python is that it provides a language that encourages you 
to program solutions making use of the basic programming constructs: sequence, 
selection and iteration. Although the language does have access to many powerful  
pre-written code libraries, they are not generally used in this book. 

Computational thinking is the ability to break down a problem into its constituent 
parts and to provide a logical and efficient coded solution. Experience shows that 
knowing how to think computationally relies much more on an understanding of  
the underlying programming concepts than on the ability to learn a few shortcut 
library routines.

This book is aimed at teaching those underlying skills which can be applied to the 
languages of the future. It is without doubt that programming languages will develop 
over the coming years, but the ability to think computationally will remain a constant. 
As technology increasingly impacts on society, people with computation thinking skills 
will be able to help shape the way that technology impacts on our future.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

x

Pseudocode and Code snippets
Python code is presented with syntax highlighting in the same way that IDEs present 
different programming terms in different colours.

number1 = int(input('Enter first number: '))  
number2 = int(input('Enter second number: '))  
if number2 == number1:  
    print('Same')  
else:  
    if number2 > number1:  
        print('Second')  
    else:  
        print('First')

Code snippet 7.3

Pseudocode is shown in text like this:

INPUT number1  
INPUT number2  
answer  number1 + number2  
OUTPUT answer

Code snippet 3.1 

 How to use this book
Throughout this book, you will notice lots of different features that will help your learning.  
These are explained below.

LEARNING INTENTIONS

These set the scene for each chapter, help with navigation through the Python programming process and 
indicate the important concepts in each topic.

KEY WORDS

Key vocabulary 
is highlighted in 
the text when it is 
first introduced. 
Definitions are then 
given in the margin, 
which explain the 
meanings of these 
words and phrases. 
You will also find 
definitions of these 
words in the glossary 
at the back of this 
book.

SKILLS FOCUS

This feature supports your computational thinking, mathematical and programming 
skills. They include useful explanations, step-by-step examples and questions for you 
to try out yourselves.

TIPS

These are short 
suggestions to 
remind you about 
important learning 
points. For example, 
a tip to help clear up 
misunderstandings 
between pseudocode 
and Python.

Further Information: This feature highlights the advanced aspects in this 
book that go beyond the immediate scope of the syllabuses.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



xi

Programming tasks
Programming tasks give you the opportunity to develop your programming and 
problem-solving skills. Answers to these questions can be found in the solutions chapter, 
on the digital part of this resource. There are three different types of programming tasks:

How to use this book

SUMMARY

There is a summary of key points at the end of each chapter.

END-OF-CHAPTER TASKS

Questions at the end of each chapter provide more demanding programming tasks, some of which may require 
use of knowledge from previous chapters. Answers to these questions can be found in the solutions chapter, on the 
digital part of this resource.

INTERACTIVE SESSION

Interactive sessions are used to illustrate simple concepts or to show the correct 
use of some new syntax. You can copy these directly into your online Python 
environment to follow along with the book. You may then want to experiment 
further to deepen your understanding.

DEMO TASKS

You will be presented with a task and a step-by-step solution will be 
provided to help familiarise you with the techniques required.

PRACTICE TASKS

Questions provide opportunities for developing skills that you have learnt about 
in the demo tasks.

CHALLENGE TASKS

Challenge tasks will stretch and challenge you even further. 

NOTE: As there are some differences in the way programming statements are 
structured between languages, you should always refer back to the syllabus pseudocode 
guide to see how algorithms will be presented in your exam.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

xii

 How to use this series

There are three programming books: one for each of the recommended 
languages in the syllabuses – Python, Microsoft Visual Basic and Java.  
Each of the books are made up of programming tasks that follow a scaffolded 
approach to skills development. This allows learners to gradually progress 
through ‘demo’, ‘practice’ and ‘challenge’ tasks to ensure that every learner is 
supported. There is also a chapter dedicated to programming scenario tasks to 
provide support for this area of the syllabuses. The digital part of each book 
contains a comprehensive solutions chapter, giving step-by-step answers to the 
tasks in the book.

The coursebook provides coverage of the full Cambridge IGCSE,  
IGCSE (9–1) and O Level Computer Science syllabuses (0478/0984/2210) for 
first examination from 2023. Each chapter explains facts and concepts and  
uses relevant real-world contexts to bring topics to life, including two case 
studies from Microsoft® Research. There is a skills focus feature containing 
worked examples and questions to develop learners’ mathematical, 
computational thinking and programming skills, as well as a programming 
tasks feature to build learners’ problem-solving skills. The programming tasks 
include ‘getting started’ skills development questions and ‘challenge’ tasks 
to ensure support is provided for every learner. Questions and exam-style 
questions in every chapter help learners to consolidate their understanding.

The digital teacher’s resource contains detailed guidance for all topics 
of the syllabuses, including common misconceptions to elicit the areas 
where learners might need extra support, as well as an engaging bank of 
lesson ideas for each syllabus topic. Differentiation is emphasised with 
advice for identification of different learner needs and suggestions of 
appropriate interventions to support and stretch learners. 

The digital teacher’s resource also contains scaffolded worksheets 
for each chapter, as well as practice exam-style papers. Answers are 
freely accessible to teachers on the ‘supporting resources’ area of the 
Cambridge GO platform.

xii

CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



IN THIS CHAPTER YOU WILL:

•	 obtain a simple Interactive Development Environment (IDE) to support your programming

•	 use both interactive mode and script mode in Python

•	 program and save a text-based application in script mode

•	 learn how to use the built-in turtle module.

 Chapter 1

Python 3

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

2

Introduction
Python is a modern, powerful programming language used by many organisations such 
as YouTube, Wikipedia, Google, Dropbox, CERN and NASA. At the time of writing, 
Python is listed as the third most popular programming language in the world.

Python 3 is the latest version of the Python programming language. It is a loosely 
typed script language. Loosely typed means that it is usually not necessary to declare 
variable types; the interpreter looks after this. A compiler converts instructions into 
machine code that can be read and executed by a computer. Script languages do not 
have a compiler. This means that, in general, Python programs cannot run as quickly 
as compiled languages. However, this brings numerous advantages such as fast and 
agile development.

1.1 Getting Python 3 and IDLE
There are Python 3 installers for most types of computer available on the python.org  
website. You should choose the latest stable version of Python 3 (Python 3.8.1 at 
time of writing). When downloaded and installed, you will find Python comes with a 
perfectly good IDE called IDLE. Starting up IDLE will enable you to run a program 
straight away.

An Integrated Development Environment (IDE) is a piece of software that is similar  
to a word processor but for writing programs. IDEs provide special tools that help 
programmers do their jobs more efficiently. They usually have an easy way of running 
the programs during the development stage – such as a Run button. There are many 
IDEs that can be used with Python. Some of them are very complicated to use, with 
many specialist tools for teams of developers that work on very large projects. IDLE is 
an IDE that has all the tools a learner requires and very little to get in your way. 
Everything that you are asked to do in this book can be done with IDLE. Figure 1.1 
shows what you are presented with when you first open IDLE.

Figure 1.1: IDLE’s Python shell on an Apple computer

KEY WORD

loosely typed: 
programming 
languages, such as 
Python, where the 
programmer does 
not have to declare 
the variable type 
when initialising or 
declaring variables.

KEY WORDS

Integrated 
Development 
Environment (IDE): 
software that helps 
programmers to 
design, create and 
test program code.

IDLE: the IDE 
provided when 
Python is installed.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

3

Figure 1.1 shows the Python shell, which is the first thing that opens when you start 
IDLE. This is an unusual feature in Python. In the shell, we can write Python 
commands and code snippets and run them without having to save a file. In this book, 
we will refer to typing code into the shell as an ‘interactive session’. Interactive sessions 
are great for experimenting and trying out new things that you learn about Python. 
When you are presented with an interactive session, it is expected that you will open a 
Python shell and type in what is shown. When you have done this, you are encouraged 
to then try out your own ideas until you feel confident with the new feature. Open 
IDLE from your Python install folder now and follow the instructions in the 
interactive session below.

INTERACTIVE SESSION

Open a Python shell and type in the following code after the >>> prompt:

>>> print('Hello world!')

Press return.

You have now run your first interactive mode program. Your code told the 
computer to print the text ‘Hello world!’ to the screen. It executed your code 
when you pressed the return key on your keyboard. You can also use interactive 
mode as a simple calculator. Try entering this sum and press return:

>>> 3*4

TIP

Interactive sessions are used to illustrate simple concepts or to show the 
correct use of some new syntax. It is a good idea to start your own interactive 
session and follow along with the book. You may then want to experiment 
further to deepen your understanding.

Sometimes we want to save our programs; this is not possible in the Python shell. To 
do this we open a file, type in our code and then save the file with a .py extension. 
In this book, we refer to this as working in script mode. In Python we can have the 
Python shell open at the same time as a script window. This means that while writing 
a program, you can still swap into the Python shell to try out something before 
continuing to write your program.

The Python shell serves another purpose. It is where you can type any input a program 
asks for and it is where any output appears. In IDLE the two windows are separate and 
you are free to arrange your desktop as you wish. To open a new file for programming 
in script mode you click on File and then New File as shown in Figure 1.2 on the 
following page.

KEY WORDS

Python shell: a 
window that allows 
Python programmers 
to write and run 
code a line at a time 
without having to 
save the code in a 
file. It is also where 
users can provide 
input and where 
output is sent.

interactive mode: 
when writing and 
running code in the 
Python shell window, 
interactive mode 
allows us to try out 
snippets of code 
without saving.

execute: another 
word for run. 
Programmers tend to 
prefer to talk about 
a program executing 
rather than running, 
but they mean the 
same thing.

script mode: Python 
scripts are written 
in a text editor or 
IDE and saved with 
the .py extension. 
Script mode enables 
programmers to write 
longer programs that 
can be edited or run 
at any time in the 
future.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

4

Figure 1.2: IDLE open on an Apple computer

In the top window in Figure 1.2, you can see that a very small program has been  
written and then saved with the name hello.py. Once the file is saved, the program can  
be run by choosing Run Module from the Run menu. Notice how the output appears in  
the Python shell window underneath.

PRACTICE TASK 1.1

Hello world

Using IDLE in script mode, open a new file and write the following program:

# hello.py  
print('Hello world!')

Then, save it to your Documents folder and run your program by selecting Run 
Module from the Run menu or pressing F5 on your keyboard.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

5

1.2 Other Integrated  
Development Environments (IDEs)
As mentioned in Section 1.1, there are many other IDEs available. If  you have a  
Raspberry Pi, Python is already installed and so is another IDE called Thonny. This  
again is a relatively simple tool that is similar to IDLE. Thonny has some extra features  
to help learners understand what is happening in their more complicated programs.

On the Raspberry Pi, you can start Thonny by selecting Thonny Python IDE from  
Programming in the main Menu in the task bar (Figure 1.3).

Figure 1.3: Starting Python 3 on a Raspberry Pi

This opens Thonny, which contains both a Python shell and a script area in a single  
window, as shown in Figure 1.4.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

6

Figure 1.4: Thonny on a Raspberry Pi; the script area is on the top and the Python shell underneath

You can carry out interactive sessions by typing directly into Thonny’s Python shell  
area. Script mode is started by selecting New from the File menu. Thonny is available  
for all major computers, not just the Raspberry Pi.

IDLE and Thonny are perfectly adequate for performing all the tasks required in this  
book. However, if  you have been programming with IDLE for a little while, you might  
like to try one of the many other IDEs available.

The one that is used for the remainder of the screenshots in this chapter, and  
occasionally later in the book, is Wing IDE 101 (Figure 1.5). This is a free version of  
a commercial IDE that provides a carefully selected set of facilities that are useful for  
students. It can be downloaded from the Wingware website, where brief  introductory  
videos and installation instructions are also available. Wing IDE 101 is available for  
Windows, Apple and Linux computers.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

7

Figure 1.5: Wing IDE 101 Integrated Development Environment

The large panel in the middle of the application is where you write your scripts.  
Interactive sessions can be run in the Python shell tab below this window.

There are two ways to run a program in Wing IDE. Clicking the run button  will  
access the Python shell as shown in Figure 1.5. An alternative – and recommended –  
way of running your scripts is to click on the bug  to the right of the run button  
(Figure 1.6). This opens the Debug I/O panel and now provides error messages in the  
Exceptions tab on the right.

Figure 1.6: Wing IDE 101 showing input and output after pressing the bug button

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

8

PRACTICE TASK 1.2

Input and output

Using your chosen IDE in script mode, open a new file and write, save and run 
the hello.py program shown in Figure 1.6. Note that when it is running, the 
program will print out ‘What is your name?’ in the Python shell. The program 
will then wait for you to type in your name and press the return key on your 
keyboard before finishing.

CHALLENGE TASK 1.1

Two inputs and an output

Using your chosen IDE in script mode, open a new file and write, save and run 
a program that asks users for their first name and then their last name. It should 
then output a greeting that includes their full name.

1.3 Turtle graphics
Python has a special built-in module that we can use to create programs that draw 
patterns. This is an implementation of the turtle graphics part of the Logo 
programming language. The great thing about this module is that the simple turtle 
commands can be combined with Python code. This means that, as we learn more about 
Python, we will be able to make more sophisticated and interesting turtle programs. 
Many of the chapters in this book will have one or two turtle tasks for you to try.

A turtle is a robot (see Figure 1.7) that can be programmed to draw a line by following 
a path and placing a pen on the floor to create a line.

Figure 1.7: A floor turtle

KEY WORD

built-in: when 
programming, 
we can write our 
own commands. 
Python comes 
with some ready-
made commands 
and modules. The 
print() function 
is a built-in function 
and turtle is an 
example of a built-in 
module.

TIP

There are many 
excellent IDEs 
available to choose 
from but, if you are 
new to programming, 
you will not go wrong 
choosing IDLE, 
Thonny or Wing IDE 
101.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

9

The language that is used to control the robot consists of simple directional commands 
and is based on the Logo programming language. There are many online sites and 
applications that allow users to control an onscreen turtle by using the Logo 
programming language. The language and syntax have developed a long way from the 
early Logo language. Some modern implementations provide multiple turtles and 
complex 3D graphics.

A few commands for a floor turtle are shown in Table 1.1:

Turtle command Meaning

distances in pixels (1 cm ≈ 20 pixels )

forward(d) Move d pixels forwards

backward(d) Move d pixels backwards

left(t) Turn left t degrees

right(t) Turn right t degrees

penup() Raise the pen (stop drawing)

pendown() Lower the pen (start drawing)

Table 1.1: Commands for a floor turtle

Using just these few commands, we can create simple line drawings on our  
computer screen.

DEMO TASK 1.1

Draw a square

Using Python’s turtle module, write a program that draws a square.

Solution

First write a line of code (line 3 in Figure 1.8) that imports the turtle module into 
our program. This gives us access to the turtle commands. Then write some 
turtle commands that draw a square. You can see the complete program in 
Figure 1.8.

Figure 1.8: A turtle program written in script mode using IDLE

TIP

Any Python code 
preceded by a hash 
symbol (#) is called 
a comment. This 
is ignored by the 
computer when 
executing the script 
and is purely for the 
programmer. It can 
be useful to include 
the file name in its 
own comment at the 
top of a script.

KEY WORD

syntax: the specific 
words, symbols 
and constructs 
defined for use by a 
particular language. 
It is the equivalent of 
grammar in creative 
writing.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

10

CONTINUED

This program will work well in IDLE and Thonny. However, in Wing IDE 101, the 
window with the square in will disappear as soon as the program has finished. 
In Wing IDE, two more lines of code are required: we need to import another 
module (see line 4 in Figure 1.9) and then add another line of code to keep the 
window that contains the ‘turtle’ open (see line 14 in Figure 1.9).

Figure 1.9: A turtle program written in script mode using Wing IDE 101

PRACTICE TASK 1.3

Draw a square

Open your preferred IDE and write, save and run the square.py program shown 
in Figure 1.8 and Figure 1.9.

CHALLENGE TASK 1.2

Draw a triangle

Open your preferred IDE and write, save and run a turtle program that draws an 
equilateral triangle.

SKILLS FOCUS 1.1

Python 3 is an industry standard programming language. It comes with many 
commands that are ready to use – for example, print() and input(). However, 
there is also a large library of other commands we can use if  we import one of the 
many built-in modules that come with the standard install. Two modules that you 
have already seen in this chapter are the turtle and tkinter modules.

KEY WORD

tkinter: a module 
that is provided as 
part of the standard 
library in Python. It 
provides tools to 
help the programmer 
build applications 
that have buttons, 
textboxes, etc.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

11

CONTINUED

There are different ways of importing these modules. How you import them affects 
the way you have to write your commands. In Figure 1.9, you can see two different 
ways of importing these modules on lines 3 and 4. In line 3, the turtle module is 
imported with the following line of code:

from turtle import *

When you realise that * stands for everything, the line of code makes sense. It 
means, ‘import every command available in the turtle module’. As long as we know 
what the commands are, doing things this way means we can then use all of the 
turtle commands in a straightforward way (as illustrated in Figure 1.9, lines 6 to 12).

Syntax is the term used to refer to a program’s grammar. The syntax used on line 4, 
in Figure 1.9, shows another way to import a module:

import tkinter

The tkinter module gives us access to a lot of graphical programming tools, but 
what is important here is how, when importing a module with this syntax, we have 
to use different syntax to call the turtle commands. When we import tkinter like 
this, we have to precede the tkinter commands with the name of the module and a 
dot like this:

tkinter.mainloop()

Question

1	 Rewrite lines 6–12 from Figure 1.9 so that the program will run correctly when 
we import turtle with import turtle.

You may be wondering why we would ever do this because it results in far more 
typing for the programmer. In larger programs, there may be several modules 
imported. It can then become confusing which commands are from the standard 
library and which are from the various modules. This becomes much clearer when 
they are all preceded by the module’s name. Also, because the programmer might 
not know the complete set of commands available in a module, they might name 
one of their own commands with a name that is available in the module. This would 
cause their program to fail to run.

There is another way of importing a module that is a kind of compromise between the 
previous two systems. Study the following program to see how this third system works:

import turtle as t  
t.forward(100)  
t.right(90)  
t.forward(100)  
t.right(90)  
t.forward(100)  
t.right(90)  
t.forward(100)

Code snippet 1.1

TIP

It is considered 
good practice, when 
importing more 
than one module, 
to only import one 
module with the 
from <module> 
import * syntax. 
This is what we did in 
the program shown 
in Figure 1.9.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

12

There are more turtle commands available than those shown in Table 1.1. To help you 
answer the turtle tasks that are found in later chapters, there is a list of the most useful 
turtle commands in Appendix 1 at the end of the book. You may wish to have a look 
now and experiment with what you can do with turtle.

1.4 Graphical user interface (GUI) 
applications

Note: GUI applications are optional. They are not covered in the syllabuses.

Although not required by the syllabuses, your Python scripts are not limited to text-
based applications. By importing the tkinter module, it is easy to produce visually rich 
graphical user interfaces (GUIs) and attach your algorithms to buttons in windows.

Chapter 5, GUI applications, is an optional chapter included in this book. In it, you 
will learn how to build your own GUIs and how to repurpose your algorithm solutions 
to work with them. From Chapter 5 onwards, there will be some tasks provided that 
include making GUIs. Although these are not required by the syllabuses, repurposing 
your solutions to work with GUIs will make you a more flexible programmer and allow 
you to produce more professional looking applications.

1.5 Additional support
The intention of this book is to introduce programming concepts that make use of the 
non-language-specific formats included in the syllabuses. Python 3 provides you with 
the opportunity to use a real programming language to develop your understanding of 
these concepts. The official documentation for the Python programming language can 
be accessed through the python.org website.

A simple syntax reference guide that can be printed out and fits in your pocket is 
available from the Coding Club website. You can find the link to the website in the 
digital part of the book.

KEY WORDS

graphical user 
interface (GUI): 
an interface that 
includes graphical 
elements, such as 
windows, icons and 
buttons.

algorithm: a process, 
instructions or set of 
rules to be followed 
during the execution 
of a program.

CONTINUED

For the most part, in this book, we are going to use the original form of import (from 
turtle import *) where we can just type the commands from the turtle module 
on their own. Nevertheless, it is important to understand that there are other ways of 
importing modules for when you start to read other people’s programs.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



1  Python 3

13

SUMMARY

Python 3 is a loosely typed programming language that is designed to encourage easily read code.

Python 3 comes with a simple Integrated Development Environment called IDLE.

There are many other IDEs available, such as Thonny and Wing IDE 101, both of which are specifically 
designed for students.

There are three main styles of programming in Python 3:

•	 interactive mode: quick tests and trials that can be programmed in the Python shell

•	 script mode: text-based scripts that can be saved so that your applications can be reused

•	 GUI applications: full, visually rich applications that can be produced in script mode.

As well as the basic programming commands available in Python, there is a large library of specialist modules 
that come with Python and can be imported into your programs such as the turtle and tkinter modules.

END-OF-CHAPTER TASKS

1	 In your preferred IDE, write a text-based program that asks users to input their 
age and then their name.  
Your program should then output a phrase similar to: ‘Hi Vipul. You are 16.’

2	 Write a turtle program that draws the house shown here:

3	 Write a turtle program that draws a regular pentagon with sides of length  
100 pixels.

TIP

Don’t forget the main 
turtle commands 
are all listed in 
Appendix 1 at the 
end of the book.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



 Chapter 2

Variables and 
arithmetic 
operators

IN THIS CHAPTER YOU WILL:

•	 declare and use variables and constants

•	 use the data types Integer, Real, Char, String and Boolean

•	 use basic mathematical operators to process input values

•	 design and represent simple programs using flowcharts and pseudocode

•	 write simple Python programs that can be run and debugged

•	 learn how to generate random numbers and round decimals.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

15

KEY WORDS

variable: a memory 
location used to 
store a value; the 
value of the data can 
be changed during 
program execution.

constant: a named 
memory location 
used to store a 
value; the value can 
be used but not 
changed during 
program execution. 
(However, in Python, 
we use normal 
variables but indicate 
that the value of the 
data should not be 
changed by giving it 
a name in all capitals, 
e.g. PI = 3.14).

data type: a 
specification of the 
kind of value that a 
variable will store.

declaring variables: 
setting up a variable 
or constant. It is 
important to declare 
or initialise global 
variables. 

initialising variables: 
giving a variable a 
start (initial) value 
when it is first 
declared.

Introduction
Programs need to store information. This information is stored in variables. 
The information stored can be numbers, for example, the cost of  an item in an 
online store or the experience points gained by a character in a video game. 
However, the information could just as easily be some text, such as the name of  a 
person or item. The values stored in variables may need to be updated as a program 
is run or used to calculate new data. To do this you can use simple mathematical 
operators. You will be familiar with most of  the mathematical operators, such as 
addition and subtraction, from your maths lessons. This chapter explains how 
to use variables and mathematical operators when designing and writing Python 
programs.

2.1 Variables and constants
Programs are normally designed to accept and input data. They also process  
the data to produce the required output. There are different data types:  
a calculator will process numerical data; a program that checks email addresses 
will process text data. When writing programs, you will use variables or  
constants to refer to these data values. A variable identifies data that can be 
changed during the execution of  a program. A constant is used for data values that 
remain fixed. In many computer languages, the data type must be provided when 
declaring or initialising variables. The data type is used by the computer to allocate 
a suitable location in memory. These languages, such as Java, are said to be  
strongly typed. 

Python is an example of a loosely typed programming language. The computer decides 
on a variable’s data type from the context you provide. Compare these two variable 
declarations, first in Visual Basic then in Python.

In Visual Basic:

Dim Score As Integer = 0

In Python:

score = 0

The same declaration, in pseudocode:

Score  0

Although loosely typed languages are easy for the programmer to write, it is still 
important to be aware what data type your variables contain.

2.2 Types of data
How can we know what data type has been allocated by Python in our programs? 
To find out the data type of a variable or constant being used in a Python program,  
use the built-in type() function. Study this interactive session in the Python shell to 
see how to use this function:

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

16

INTERACTIVE SESSION

>>> my_integer = 3  
>>> type(my_integer)  
<class 'int'>  
>>> my_string = 'hello'  
>>> type(my_string)  
<class 'str'>

The most important data types you need to know are shown in Table 2.1:

Data type Description and Use Python type(variable) query returns:

Integer Whole numbers, either positive or negative.

Used with quantities such as the number of students 
at a school – you cannot have half a student.

'int'

Real Positive or negative fractional values.

Used with numerical values that require decimal 
parts, such as currency.

Real is the data type used by many programming 
languages and is also referred to in the syllabuses.

'float'

Python does not use the term Real.  
The equivalent data type in Python is 
called 'floating point'.

Char A single character or symbol (for example,  
A, z, $, 6).

A Char variable that holds a digit; it cannot be used 
in calculations.

'str'

Python treats characters as small strings. 

Note:

>>> my_var = '3' 
>>> type(my_var) 
<class 'str'> 
>>> my_var = 3 
>>> type(my_var) 
<class 'int'>

String More than one character (a string of characters).

Used to hold words, names or sentences but also 
punctuation, numbers as text, etc.

'str'

e.g.

>>> my_string = 'yellow' 
>>> type(my_var) 
<class 'str'> 
>>> mobile = '0774 333 333' 
>>> type(my_var) 
<class 'str'>

Boolean One of two values, either TRUE or FALSE.

Used to indicate the result of a condition.  
For example, in a computer game, a Boolean 
variable might be used to store whether a player 
has chosen to have the sound effects on.

'bool'

e.g.

>>> sfx = False 
>>> type(sfx) 
<class 'bool'>

Table 2.1: Data types

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

17

2.3 Pseudo numbers
Telephone numbers and ISBN numbers are not really numbers. They are a collection  
of digits used to uniquely identify an item. Sometimes they contain spaces or start with  
a zero. They are not intended to be used in calculations. These are known as pseudo  
numbers and it is normal to store them in a String variable. If  you store a mobile  
phone number as an integer, any leading zeroes will be removed, while spaces and  
symbols are not permitted.

2.4 Naming conventions in Python
There are a variety of naming conventions in Python. Here are a few of them.

Variable names
Use all lower case, starting with a letter and joining words with underscores. It is  
considered good practice to use descriptive names. This aids readability and reduces  
the need for so much commenting. Commenting is where the programmer writes notes  
in the program that the computer ignores. In Python these start with the # symbol. In  
pseudocode, comments are preceded with two slashes (//). You can see examples of  
commented code in Demo Task 2.1 in Section 2.6, later in this chapter.

For example:

score_total = 56  ✓  
Total = 56        ✕  
t = 56            ✕

Further Information:
There are 31 reserved words that have a defined function in the Python 
programming language. These words cannot be used as your own variable 
names:
and as assert break class continue def del elif else 
except finally for from global if import in is lambda 
nonlocal not or pass print raise return try while with 
yield.

Constants
Constants are values that do not vary. Constants keep the same value throughout our programs. Use all upper case 
characters to indicate constants.

In Python:

PI = 3.1415

In pseudocode:

CONSTANT PI  3.1415

KEY WORD

commenting: adding 
human readable 
notes to a program. 
The comments are 
intended to help 
explain how the code 
works. Comments 
are ignored by the 
computer when the 
code is executed. 
In pseudocode, 
comments are 
preceded with two 
forward slashes // 
and in Python by a 
hash symbol #.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

18

2.5 Arithmetic operators
There are a number of operations that can be performed on numerical data in  
your programs.

The most important operators used in Python 3 and their equivalent in pseudocode are 
shown in Table 2.2:

Operation Example of use Description

Addition Python:

result = num1 + num2

Pseudocode:

result  num1 + num2

Adds the values held in the 
variables num1 and num2 
and stores the result in the 
variable result.

Subtraction Python:

result = num1 - num2

Pseudocode:

result  num1 - num2

Subtracts the value held 
in num2 from the value in 
num1 and stores the result in 
the variable result.

Multiplication Python:

result = num1 * num2

Pseudocode:

result  num1 * num2

Multiplies the values held 
in the variables num1 and 
num2 and stores the result in 
the variable result.

Power of Python:

result = num1 ** num2

Pseudocode:

result  num1 ^ num2

Raises the value held in 
num1 to the power of num2.  
e.g. result = 3 ** 2 
is the Python version of 
32 and is written 3 ^ 2 in 
pseudocode.

Division Python:

result = num1 / num2

Pseudocode:

result  num1 / num2

Divides the value held in the 
variable num1 by the value 
held in num2 and stores 
the result in the variable 
result.

Integer 
Division

Python:

result = num1 // num2

Pseudocode:

result  num1 DIV num2

Finds the number of times 
num2 can go into num1 
completely, discards the 
remainder, and stores 
the result in the variable 
result.

(continued)SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

19

Operation Example of use Description

Modulus Python:

result = num1 % num2

Pseudocode:

result  num1 MOD num2

Finds the number of times 
num2 can go into num1 
completely, discards this 
value, and stores the 
remainder in the variable 
result.

Table 2.2: Operators used in Python 3 and pseudocode

INTERACTIVE SESSION

Now is a good time to open up a Python shell and have an interactive session 
to try out some of these operators yourself. To get you started, try entering the 
code shown below into the Python shell, pressing return after each line.

>>> a = 7  
>>> b = 3  
>>> c = a/b  
>>> type(c)  
>>> print(c) 

PRACTICE TASK 2.1

Data type

Find out what value is stored in c after completing the interactive session.

TIP

In your maths lessons you may have been taught the acronym BIDMAS 
(sometimes BODMAS or BOMDAS). The order of mathematical operations in 
programming languages is the same as that taught in maths lessons.
e.g. 3 × 4 + 7 ÷ 4 = 13.75
However, this is very difficult to read and many errors can creep into programs 
if we rely on doing this correctly. This is why programmers prefer to use plenty 
of brackets, and you should too.
e.g. 
>>> (3*4) + (7/4)  
13.75 

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

20

DEMO TASK 2.1

Multiply machine

Produce a program called ‘Multiply machine’ that takes two numbers input  
by the user. It then multiplies them together and outputs the result.

Solution

For this demo task, first we need to design the algorithm. Flowchart 2.1 shows  
one solution and Code snippet 2.1 shows a pseudocode solution. The next  
chapter will explain how you can make your own flowcharts and write your  
own pseudocode.

START

result ← 0

result ← 
number1 * number2

OUTPUT
result

STOP

INPUT
number1
number2

Flowchart 2.1

TIP

Whenever you are 
provided with a 
programming demo 
task, it is a good idea 
to open a new file in 
script mode and copy 
in the code provided. 
Think about what 
each line of code is 
doing as you type. 
Then save the script 
and try it out.

result  0

INPUT number1

INPUT number2

result  number1 * number2

OUTPUT result

Code snippet 2.1

2.6 Programming tasks

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

21

CONTINUED

In Python, assignment is indicated by the use of the = symbol.  
In pseudocode, the  is used.

TIP

We need to use Python’s input() function to send a message to 
the user and collect their keyboard input. You will find you need to 
remember that input() only returns string data types, so if we 
need to do calculations on numbers supplied by the user, we will 
have to cast the string into an integer by using the int()function. 
For example.:
age = int(input('How old are you?'))

KEY WORD

cast: the process 
of changing the 
data type of a given 
variable into another 
data type. For 
example, a variable 
that holds the string 
value ‘2’ could be 
cast into an integer 
variable storing the 
value 2. 

Here is a Python implementation of the solution shown in Flowchart 2.1 and  
the pseudocode:

# multiply_demo.py

# Initialise a variable to keep track of the result  
result = 0

# Request and store user input  
number1 = int(input('Please insert first number: '))  
number2 = int(input('Please insert second number: '))

result = number1 * number2

# Display the value held in the variable result  
print('The answer is ', result)

# End nicely by waiting for the user to press the return key.
input('\n\nPress RETURN to finish.')

Code snippet 2.2

It is worth noting that initialisation of result is not necessary in this program.  
It is used here to illustrate the initialisation process.

PRACTICE TASK 2.2

Remainder machine

Produce a program called ‘Remainder machine’ that takes two numbers input 
by the user. It then outputs the remainder after dividing the first number by  
the second.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

22

CHALLENGE TASKS 2.1–2.2

2.1	 Volume of a sphere

Design a program where the input is the diameter of a sphere (in metres) 
and the output is the volume of the sphere (in cubic metres). The formula 
you will need is V = 4/3 * π * r3.

2.2	 Grass seed calculator

A gardener sows grass seed at 50 g/m2. She works for many people in a 
week. She wants a calculator where she can estimate lawns as rectangles 
and find out how much grass seed is required. Write a program that takes 
the length and width of a lawn in metres and outputs the amount of grass 
seed required in grams.

2.7 Python modules
You may recall from earlier in the chapter that there are 31 reserved words in Python that  
you cannot use as identifiers in your programs. This only applies when using the core  
features of the language. Python also has lots of libraries of other code you can use in  
your programs. These are called modules. There are many built-in modules. There are  
also many more that have been made by other programmers around the world that you  
can use and, of course, you can make your own.

In the end-of-chapter tasks, we are going to use two built-in modules: random and  
turtle. In Chapter 5, we will introduce another built-in module that will enable you  
to add a GUI to your programs. To access the tools in these modules, we first have  
to import them. A complex program might import several different modules.  
This means that we are considerably increasing the number of reserved words that 
we cannot use as our own identifiers. It is tempting to import everything in a module  
with code like this:

from turtle import *  // import everything from the turtle library

Now we can easily create a window with a ‘turtle’ in it that moves forwards and draws  
a line of length 100 pixels with one line of code:

forward(100)

Figure 2.1 shows how this appears on screen.

Figure 2.1: A window with a ‘turtle’ that has moved forwards 100 pixels
SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

23

However, there are now lots of new words we have to be careful about using in our  
programs. It is safer to import your modules in the following way:

import turtle	

This still gives your programs access to all the tools in this module but it now requires  
you to add turtle. to all your commands. For example, to move the turtle forwards,  
we now need to write:

turtle.forward(100)

By importing modules in this way, we no longer need to worry about confusing 
keywords from the turtle module with words we choose to use as identifiers elsewhere 
in our programs. Equally important, it is now very clear where the forward() 
command is coming from.

As you become more experienced, you will meet many programs that import modules 
in a variety of ways. Generally speaking, if  your programs import only one module,  
it is usually fine to use the from turtle import * syntax and save yourself  the 
extra typing.

PRACTICE TASK 2.3

Drawing squares

Write a program that inputs the side-length of a square (in pixels). As output, 
the turtle should draw a square on the screen with the required dimensions.

For this task you need to import Python’s turtle module in the first line of your 
program like this:

from turtle import * 

To move the turtle forwards, drawing a line behind it, use this code:

forward(d)

where d is the distance in pixels you want to move.

To turn the turtle to the right, use this code:

right(a)

where a is the angle in degrees you want to turn.

CHALLENGE TASK 2.3

Drawing hexagons

Write a program that inputs the side-length of a hexagon (in pixels).  
As output, the turtle should draw a regular hexagon on the screen with the 
required dimensions.SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



CAMBRIDGE IGCSE™ & O LEVEL COMPUTER SCIENCE: PROGRAMMING BOOK

24

2.8 Random and Round 
It is easy to generate a random number when we require one in our programs.  
In pseudocode, or in a flowchart, this is achieved by calling RANDOM(). This generates a 
random decimal number between 0 and 1. We can assign it to a variable in the usual way:

my_random_number  RANDOM()

This may not be what we want though. For example, we may want a random integer 
from 1 to 10. This can be achieved by combining RANDOM() with ROUND(). ROUND() 
takes two arguments: the identifier of the number we want to be rounded, and the 
number of decimal places to round to (0 = integers). Putting these two functions 
together we can write:

my_dice_role  ROUND(RANDOM()*10, 0)

The corresponding random function works differently in Python. First we need to 
import the random module at the start of our program and then call the randint() 
function. randint() returns a random integer. It takes two integers as arguments, 
the first one is the lowest integer it might return, and the second integer is the highest. 
To produce a random number from 1 to 10, in Python, we would write code like this:

from random import *  
my_dice_role  randint(1, 10)

Python can also round decimal numbers by calling the round() function. It works the 
same way as the corresponding pseudocode function:

>>> round(8.6234, 1)  
>>> 8.6

You may be surprised how often programmers require random numbers.

SUMMARY

Programs use variables and constants to hold values.

Variables and constants have identifiers (names) that are used to refer to them in the program.

Variables are able to have the value they contain changed during the execution of a program. The values within 
constants remain the same while the program is running.

In Python, variable names should be descriptive and consist of lower case words joined by underscores.

In Python, constant names should contain all capital letters. In Cambridge IGCSE and O Level Computer 
Science pseudocode, they should be preceded with the CONSTANT keyword.

It is important to know what data types your variables are using (Integer, Real, Char, String and 
Boolean). This can be checked by using the type() function in Python. 

The input() function returns values from the user as String data types. If  number inputs are required, the 
values returned must be cast into Integers or Floats using the int() or float() functions.

Mathematical operators can be used with values held in numeric variables.

Random numbers can be generated with randint() and decimals rounded with the round() function.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).



2  Variables and arithmetic operators

25

END-OF-CHAPTER TASKS

1	 Program a system that outputs a random number from 1 to 6 inclusive.

	 You will need to import Python’s random module in the first line of your 
program like this:

import random

	 To obtain a random number and store it in a variable called  
my_random_number, use this code:

my_random_number = random.randint(a,b)

	 where a is the first possible random number and b is the highest possible 
random number.

2	 Complete the program below that inputs the time from a 24-hour clock in  
the format hrs.mins (e.g. 18.25) and outputs the time in 12-hour format  
(e.g. 6.25). You do not need to add ‘am’ or ‘pm’ to the output.

time24 = float(input('Provide the time in the form 18.25: '))

if time24 < 13.0:

    print(time24)  # The input is in the correct format

else:

    # Your code goes here

3	 a	� Write a program that inputs the side-length of a triangle (in pixels).  
As output, the turtle should draw an equilateral triangle on the screen  
with the required dimensions.

	 The input should be the length of the similar sides, s, and the similar angles, 
a. The length of the base, b, is not required.

aa

b

ss

b 	 Now try to produce a new version of your program that can draw isosceles 
triangles.

TIP

The function 
round(num, a) 
takes a float num 
and the number of 
decimal places to 
round it to.

SAMPLE

Original material © Cambridge University Press 2021. This material is not final and is subject to further changes prior to publication.

We are working with Cambridge Assessment International Education towards endorsement of this title.  
Any references or material related to answers, grades, papers or examinations are based on the opinion of the author(s).




